Effect of various superdisintegrants on the drug release profile and disintegration time of Lamotrigine orally disintegrating tablets

Abstract


C. Patil and S. Das *

The demand for orally disintegrating tablets of lamotrigine has been growing during the last decade especially for the geriatric and pediatric patients. Lamotrigine is a recognized drug for epilepsy, so development of an ODT of lamotrigine and to evaluate the effect of various superdisintegrants on its disintegration time and release profile was the prime objective of this research work. Tablets were prepared by direct compression technique using 3 different superdisintegrants. Sodium starch glycolate, Croscarmellose sodium and Crosspovidone XL-10 were used as superdisintegrants in combinations to achieve optimum release profile, disintegration time and hardness. Direct compression process was selected for this formulation of ODT tablets, because porous nature is more in direct compression blend than wet granulation blend, so it will give faster disintegration. Microcrystalline cellulose was used as diluent and mannitol, mint flavor and sodium saccharin were used to enhance the organoleptic properties of tablets. The tablets were evaluated for weight variation, hardness, friability, in-vitro disintegration time and drug release characteristics. Hardness and friability data indicated good mechanical strength around 3 kg/cm 2 for all the batches. The results of in-vitro disintegration time indicated that the tablets dispersed rapidly in mouth within 8 s. Dissolution study revealed release rate of drug from the tablets was comparable with marketed tablet formulation of lamotrigine. It was concluded that superdisintegrants addition technique is a useful method for preparing orally disintegrating tablets by direct compression method.

Share this article

Awards Nomination

Select your language of interest to view the total content in your interested language

Indexed In
  • Index Copernicus
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • CiteFactor
  • Electronic Journals Library
  • OCLC- WorldCat
  • Root indexing
  • Academic Resource Index