Suping Zhou, Shu Wei, Braden Booneand Shawn Levy
Large-scale gene expression affected by salt stress was analyzed with tomato seedlings (Lycoperson esculentum Mill cv. Money Maker) by a cDNA microarray (Tom1). The significantly differentially expressed genes (5% BenjaminiHochberg false discovery rate) consisted of 1757 sequences in the analyzed tissues (cotyledons + shoot tip). Genes with over 2 fold difference were selected from the list and further categorized into different function and cellular processes. Tomato homologous genes for the chaperone proteins, antioxidant enzymes (catalase and peroxidase), and ion transporters (Na+ -driven multidrug efflux pump, vacuolar ATPase, and others) were induced. The ACC oxidase and ethylene-responsive gene tomato homologs had higher transcript level after salt treatment. Multiple members with different expression patterns were identified for the bZIP, WRKY, and MADS-box transcription regulator. Different genes in the signal transduction pathway, such as the protein kinases (Shaggy kinase, mitogenactivated protein kinase, ethylene receptor neverripe, and others), protein phosphatases, calmodulin, G -protein, and the N - myristoyltransferase were regulated by salt stress. Most of the protease and the inhibitor homologs were suppressed by salt stress. In addition, different isoforms of cytochrome P450, genes for polyamine biosynthesis (putrescine and proline) and detoxification compounds (glutathione and thioredoxin), several key enzyme genes in the metabolic pathways of carbohydrates, amino acids, and fatty acids, were also affected by salt treatment. This study has provided a set of candidate genes, especially those in the regulatory machinery that can be further investigated to define salt stress in tomato and other plant species.
Share this article
Select your language of interest to view the total content in your interested language