Mohmed A. Abdel-Satar1, Mohmed. S. Khalil2, I. N. Mohmed1, Kamel A. AbdElsalam2,3*, and Joseph A. Verreet3
The high- resolution genotyping method of amplified fragment length polymorphism (AFLP) analysis was used to study the genetic relationships within and between natural populations of five Fusarium spp. AFLP templates were prepared by the digestion of Fusarium DNA with EcoRI and MseI restriction endonucleases and subsequent ligation of corresponding site-specific adapters. An average of 44 loci was assayed simultaneously with each primer pair and DNA markers in the range 100 to 500 bp were considered for analysis. A total of 80 AFLP polymorphic markers were obtained using four primer combinations, with an average of 20 polymorphic markers observed per primer pair. UPGMA analyses indicated 5 distinct clusters at the phenon line of 30% on the genetic similarity scale corresponding to the 5 taxa. The similarity percent of each group oscillated between 87 and 97%. The phenetic dendrogram generated by UPGMA as well as principal coordinate analysis (PCA) grouped all of the Fusarium spp. isolates into five major clusters. No clear trend was detected between clustering in the AFLP dendrogram and geographic origin, host genotype of the tested isolates with a few exceptions. The results of the present study provide evidence of the high discriminatory power of AFLP analysis, suggesting the possible applicability of this method to the molecular characterization of Fusarium.
Share this article
Select your language of interest to view the total content in your interested language